14) 3D Microscopy/ Tomography

3D Microscopy

« Atom probe Tomography (origin/applications)
« X-ray Tomography (Medicine, Materials
science)
* Radon transform
 Back projection
* Tilt-series tomography in TEM
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Field emission (electron, ion) microscopy

FEM: vacuum,
CWOStat electrons
J voltage <0
, FIM: low pressure rare gas,
Viewport ionized gas molecules
voltage >0
_ Sharp tip
Specimen (R radius of curvature):
Electric field E=V/R

Screen (E~10° V/m) Vel kV

R~0.1 um
Magnification M=D/R?
Image gas (M~ ..10%)  D=0.3m

B~1.5 (tip shape)
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Field Ion Microscopy

Gas Field Ionisation Source (GFIS)

atoms (molecules) are trapped by
polarizations forces

Tonisation: tunnelling process with
probability D:
-c(I-D)
Dae vV

I : Ionisation potential
® : Work function of emitter
V : El. Potential
C :constant
Ions are ejected
from the surface
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Field emission (electron, ion) microscopy FEM, FIM

Field ion micrograph from a [100] oriented Ball model . The prominent sites,
specimen of Pt 17 at.% Rh catalyst material representing kink site atoms on the
imaged in Ne gas with an applied voltage of surface are shown in white. These form
approx. 10 kV at 80K. Each of the bright spots in a serie of concentric rings similar to
the left picture is the image of an individual atom those seen in the field-ion picture

on the specimen surface.
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Atom probe Tomography

- APFIM: Atom Probe Field Ton Microscopy

Measure the Time Of Flight (ToF), to determine the
mass of the ion...|
- elemental analysis on atomic level

Use Laser to assist ablation of ions

- LAWATAP: Laser Assisted Wide Angle Tomographic Atom
Probe

- Insulating samples become possible
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Wide Angle position sensitive detector

Sample needs to have tip shape: metals: etching, insulators: FIB
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Laser evaporation + Field simulation ———» Optimized LEAP microscopy

Figure 2

(Left) An array of microtips sitting on a conducting substrate with green laser light impinging
on a single microtip. (Middle) The calculated electric field at a microtip that results from the
E-component of the laser beam. Courtesy of Prof. Tamar Seideman (Chemistry Department,
Northwestern University). (Right) The results of an analysis of an InAs nanowire grown by

the vapor-liquid-solid (VLS) technique.
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Detection speed

Electrical pulsing

The pulse repetition rate is variable in discrete steps from 1 kHz to 250 kHz,
and a detection rate of up to 2x10¢ ion min-1 (120x106 ion h!) can be achieved.
This implies that a data set containing 10° atoms can be obtained in 8 h from a
single cooperative specimen. For electrical pulsing, the full-width half-maximum
(FWHM) value of m/Am is 500.

Laser (picosecond) Pulsing

For the LEAP 3000X Si XTM, the laser pulse repetition rate is variable in steps
from 1 kHz to 500 kHz, and a detection rate of up to 5x10° ion min-1 (300x10°
ion h™!) can be obtained. Therefore, a data set containing 10° atoms is attainable
from a single very cooperative specimen in 3 h, which is a factor of 2.5 faster
than with electrical pulsing.
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Figure 9

APT reconstruction of a Ni-10 at.% Al-8.5 at.% Cr-2 at.% Re alloy in the as-quenched state,
which indicates the presence of y'-precipitates. A 12 at.% Al isoconcentration surface is used
to indicate the y/y’ interfaces. A portion of the y'-precipitate is magnified, with Al (red ), Cr
(blue), and Re (orange) atoms shown to display the alternating Al planes in the [100] direction

of the ordered L1, structure. Ni atoms are not shown for the sake of clarity. Adapted from
Reference 129,
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InAs nano-wire

Figure 12

Three-dimensional reconseruction of an InAs nanowire. The sample eemperature was ata ixed
value berween 50 K to 100 K, and the ambient pressure in the LEAP™ romograph was 10-10
Torr during its seom-by-atom dissecdon. (a) Side view (perpendicular o growth axis) of a

25 5 25 % 300 nm® reconstruction of the nanowire. In, As, and An atoms are rendered as green,
purple, and yellow dots, respectively. Only 5% of the atoms are displayed to provide a sense of
depth. () A 21 x 21 nm? end-on view of nanowire reconseruction showing hexagonal faceting.
(¢ SEM micrograph of an InAs nanowire displaying a hexagonal cross secdon (1.7 pm?),

{d) Magnified side view of the nanowire displaying (0001) atomic planes. The dimensions are
23 x 14 nm?. The slight curvarure of the atomic planes is an artifact; che software used for the
reconseruction assumes a hemispherical end-form for the field-evaporating nanowires. () For
clarity, 1 27 % 27 % 20 nm’® reconstruction of the nanowire with Au atoms is enlarged, and 2%
of In and As atoms are shown; the growth axis runs left o righe The 18 An avoms within the
volume correspond to a concentration of 100 asomic parts per million. From Reference 121.
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Figure 13

Catalyst nanowires interface in 3-D. (#) One-nm-thick slices through the nanowires over the
region defined by the white bar in . The diameter of the slices is 10 nm. In, As, and Au atoms
are rendered as green, purple, and yellow dots, respectively. (5) A 14 x 14 x 23 nm?
reconstruction of an InAs nanowire tip showing a Au catalyst particle at the top.

(¢) Composition profile in 1-D plotted along the growth axis and through the
catalyst/nanowire interface. The plotted composition is a radially average value within a
4-nm-diameter cylinder centered in the middle of the nanowire. From Reference 121.
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Introduction to Tomography

Tomography is imaging by sections or sectioning. A device used
in tomography is called a fomograph, while the image produced is
a fomogram.

The method is used in medicine, archaeology, biology,
geophysics, oceanography, materials science, astrophysics and
other sciences.

In most cases it is based on the mathematical procedure called
tomographic reconstruction.

The word "fomography" is derived from the Greek tomos (slice)
and graphein (to write).

Wickipedia
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http://en.wikipedia.org/wiki/Medicine
http://en.wikipedia.org/wiki/Archaeology
http://en.wikipedia.org/wiki/Biology
http://en.wikipedia.org/wiki/Geophysics
http://en.wikipedia.org/wiki/Oceanography
http://en.wikipedia.org/wiki/Materials_science
http://en.wikipedia.org/wiki/Astrophysics
http://en.wikipedia.org/wiki/Tomographic_reconstruction
http://en.wikipedia.org/wiki/Greek_language

Introduction to Tomography

Tomography is a method in which a 3-D structure is
reconstructed from a series of 2-D projections
(images) acquired at successive tilts (Radon 1917).

First developed for use in medical imagir;? (1963,
Nobel Prize for Medicine in 1979) using X-rays,
ultrasound and magnetic resonance (e.g. ‘cat-scans’)..

Found further application in geology, astronomy,
materials science, etc...
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Introduction to Tomography

Recording

- Series of 2D images

- Destructive: serial
sectioning, FIB, LEAP

- Non-destructive:
X-rays, TEM

Reconstruction and

« viewing »

» Registration (alignment

of images)

* Back-projection,

reconstruct
(tilt-series)

- Tomogram
+ Segmentation (image

processing), extraction
of the desired
information
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3D imaging in medicine

Non-invasive methods are preferred!

The disadvantage of conventional X-
radiographs is its inability to discriminate
between organs of close absorptivity or
overlapping organs in the viewing
direction.

X-ray computed tomography overcomes
that limitation:

X-radiographs are made in many different
directions and combined mathematically
to to reconstruct cross-sectional maps.

reconstruction fomography or computer
assisted tomography.
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Tomograph

¥-ray Tube

Test Component

X-ray Beam Image Intensifier

Computer

Turntable Controlled Turmntable

Interface
Unit
Analog Video
Signal

Serial Link

PC with Image
Capturing Hardware
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Radon 1917

Uber die Bestimmuong von Funktionem duoreh ihre
Integralwerte Mnge gewisser Mannigfaltigkeiten.

Vos

Jomas Bapa.

Integriert =man eine geeignetes Hegularititsbedinguegen nates
worfens Funktion sweier Verlederlizhen 7, w — size Punkifwnkfion
fiF) in der Ebsne — lings einer belishigen Geraden g, so erbilt
man in den [ntegralwerten Fg) eine Gerodenfunktion Das in Ab-
scheitt A vorliegesder Abhasdlung geloste Problem ist dis Um-
kehrung disser linearen Funktionaltransformation, 4. h. e werden
folgende Fragen beastwortsl: kann jede, pecigueten Hegularitats-
bedisgunges geolgends Geradenfunktion suf diess Walse sotstazdon
gedacht werden? Wemn ja, ist dass [ derch F eindeutiz bestimmt
and wis kasn o4 ermitieli werden?

Ber. Sdchs. Akad. Wiss. Leipzig, Math. Phys. KI. 69, 262 (1917)

English translation in: Deans, S.R. (1983) The Radon transform
and its applications. John Wiley & Sons, NY)
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Radon Transform

e )= s

= [pir; )l g
projection lp[r.é}}¢

S—

The paper defines the Radon transform R as the mapping of a function

fix,y), descnbing a real space object D, by the projection, or line integral,
through falong all possible lines L:

Rf = j f(x,y)ds,

L

the sampling of an experimental object b
a projection. The conseguence of such eqlivs

reconstruction of an object f(x,y) from projections Rf can be achieved
by implementation of the inverse Radon transform
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Radon Transform

Object Radon transform
-180° = Sinogram

180°
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Radon Transform

(projection in different directions)

Object Radon transform
-180° = Sinogram

180°
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Back projection

(« reconstruction »)

N
e
S

[i} (b

Projection Back projection
recording reconstructing
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Back projection
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Projection
and
Back Projection
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Tomography in medicine
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3D imaging in materials science

360degree X-ray tomography
on synchrotron

Milan Felberbaum
STI-IMX-LSMX

Cylinder of an Al-Cu Alloy
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3D imaging in materials science

Tomogram (reconstructed volume)
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3D imaging in materials science

(rendering,visualisation)

Reconstructed pore
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Tomography with electrons

Stopping range for electrons (997% absorbed)

Element 4-Be 13-Al 29-Cu 82-Pb
(specific weight) 184 g/cm3 | 2.7 g/cm3 | 893 g/cm3 11.3 g/cm3
X-rays
Cu-Ka A=1.54 A 16 mm 0.35 mm 0.10 mm 0.017 mm
Mo-Ka A=0.71 A 83 mm 3.3 mm 0.10 mm 0.034 mm
Neutrons A%1.08 A

89 m 6m 0.26 m 14 m
élec’rr'ons
A=0.037 A & 100 kV 39 um 42 1m 11 ym 0.6 um
A=0.020 A & 300 kV ~330 pm
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Tomography in TEM, Bio-EM

Electron beam

e

uﬂ

+60°
. Tilted views

Segmentation
and measurement

Views aligned
4 and normalized

Rendering and
visualization

‘i{ Frey TG, et al. 2006.
Annu. Rev. Biophys. Biomol. Struct. 35:199-224
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Tilt series, -60 ... +60 degree tilt
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Tomogram
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Tomo workflow

3D object Tilt series Tomogram 3D Model

ACQUISITION ALIGNMENT POSTPROCESSING
& &
RECONSTRUCTION INTERPRETATION

e 6
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geometrical limit, the missing wedge

* There is a limit in the tilt angle we can reach (~£70°)
due to:

— Design of the holder
— Grid bars

— Increasing thickness of the specimen
with high tilt angles

* This is known as the missing wedge problem
(missing information, loss of resolution)
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projection requirement

Radon: projection requirement: monotonically varying function of a
physical property: mass-thickness dominant in biological samples !

Diffraction contrast in BF TEM not suitable
Diffraction contrast ® Z- contrast ©

BF-TEM

Si-Ge multiple quantum well structure
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Tomography with HAADF (z-contrast)

_ _ _ Dogan Ozkaya,Paul Midgley,
nanoparticle bimetallic catalysts Catalysis Letters 60 (1999) 113120

supported on mesoporous silica

, PdgsRug nanoparticles
STEM HAADF: heterogeneous catalyst anchored to the wall

composed of PdgRug nanoparticles (~ 1 nm)
on mesoporous silica support with
mesopores of ~ 3 nm diameter.

of mesopore

Y G
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Electron Tomography in Materials Science

» Acquisition and alignment of typically 2x71 tilted
images

- Back-projection: missing wedge

* Projection requirement (image contrast)

* Thickness limitation (samples rather thin)

- FIB/SEM Nano-Tomography
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